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Inhomogeneous Ising chain in a transverse field: finite-size 
scaling and asymptotic conformal spectrum 

Bertrand Berche and Loi’c Turban 
Laboratoire de Physique du solide:, Universiti de Nancy I ,  BP N o  239, F 54506 Vandoeuvre 
les Nancy Cedex, France 

Received 12 February 1990 

Abstract. The quantum version of the Hilhorst-van Leeuwen model i.e. an inhomogeneous 
lsing model in a transverse field with a marginal perturbation of the bulk interaction varying 
like I - ’  with the distance I from the surface is studied numerically on a finite chain with 
symmetric interactions using fermion techniques and finite-size scaling at the bulk critical 
point. The surface exponents for the energy and the magnetisation are respectively x, = 
2 a + 2 , x m = a + 4 w h e n  a ~ a , a n d x , = - a + f , ~ , , , = O a n d x ~ = - a - ~  when a s  a, where 
a ,  = -;is the critical value of the perturbation amplitude below which the surface becomes 
ordered at the bulk critical point. Although the magnetic exponents can be translated from 
the known classical values, the surface thermal exponents seem to be ne&. The excitation 
spectrum obtained in the continuum limit exhibits an asymptotic conformal behaviour. 
An analytic calculation of the leading finite-size corrections when a > ac and a test for the 
consistency of the numerical results when a C a, are given in the appendix. 

1. Introduction 

When an inhomogeneous perturbation is introduced in the semi-infinite two- 
dimensional Ising model with an interaction K ( I )  varying with the distance 1 from the 
surface like: 

K ( I )  = K ( w )  --A/l’ (1.1) 
where K ( w )  is the bulk interaction, depending on the value of the decay exponent 
y>O,  one may get different surface critical behaviours. This is the Hilhorst-van 
Leeuwen model (Hilhorst and van Leeuwen 1981) which has been extensively studied 
in recent years (Burkhardt 1982a, Blote and Hilhorst 1983, Burkhardt and Guim 1984, 
Burkhardt er a1 1984, Blote and Hilhorst 1985). 

The y-dependence of the surface critical behaviour may be understood using a 
simple scaling argument (Burkhardt 1982b, Cordery 1982). Near the bulk critical point 
K * ,  under a change of the length scale by a factor b, K (  I )  - K *  transforms locally like: 

! X [ K (  I )  - K * ]  = K ’ ( w )  -A’”‘’ - K *  = b ” l [ K ( a )  - A/ / ’  - K * ]  (1.2) 
where I’ = I /  b and y, is the bulk thermal exponent. Substracting the bulk renormalisa- 
tion equation from equation (1.2), one gets the following transformation for the 
amplitude of the inhomogeneity: 

(1.3) A’= b’,-’A. 
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For the two-dimensional Ising model, y ,  = 1 and, when y >  1 the perturbation is 
irrelevant, an  ordinary surface critical behaviour is obtained. When y < 1, the perturba- 
tion becomes relevant, the surface is ordered at  the bulk critical point when A < 0 and  
there is an  anomalous decay of the surface correlations. When y = 1, the perturbation 
is marginal, the surface is ordered at the bulk critical point when A is lower than a 
critical value A,, the surface critical exponents vary with A with a change in their 
behaviour at  A,. 

On a square lattice with a constant interaction parallel to the surface K ,  and a 
varying perpendicular interaction K z ( I )  of the form given in equation ( l . l ) ,  the 
exponents are simple functions of the parameter: 

A = 4A/sinh[2K2(oc)]. (1.4) 

The critical value when y = 1 is 

A,= -1 

and  the marginal magnetic surface exponent is 

x, = ( A +  1 ) / 2  A>  -1 ( 1 . 6 ~ )  

x, = 0, x;= - ( A +  1 ) / 2  A S  -1 (1.6b) 

where the value x, = 0 below A, is linked to the spontaneous surface magnetisation 
and  x& = v I l / 2  gives the decay of the surface correlations towards their non-vanishing 
limit. 

These results can be translated for the one-dimensional inhomogeneous Ising model 
in a transverse field using the extreme anisotropic limit ( K*(co) + 0, K ,  + C O )  of the 
two-dimensional problem (Kogut 1979). Then: 

A= 1 / 2 K , ( a ) A  ( 1 . 7 ~ )  

K,( I )  -- K2(co)( 1 - A/21 ' )  = A ( I ) T  (1.76) 

where 7 = is the infinitesimal lattice spacing in the temporal direction and 

A ( I )  = A (CO)( 1 - cy//') (1.8) 
is the inhomogeneous coupling between first-neighbour spins along the semi-infinite 
quantum chain with: 

cy = A/2 (1.9) 
and  K,(cc)=h(@)-r. The critical value of the perturbation amplitude when y =  1 is 
cy , = - -  and the magnetic surface exponents are: 

(1.10a) 

(1.10b) 

The first value is in agreement with the result of a direct calculation of the surface 
magnetisation on the semi-infinite quantum Ising chain (Peschel 1984, Kaiser and  
Peschel 1989). 

In the present work we present some results concerning the inhomogeneous Ising 
model in a transverse field on a finite chain with y = 1 i.e. in the marginal case. In 
section 2 the thermal and  magnetic surface exponents are deduced from a numerical 
finite-size scaling study of chains of up to 180 spins. Although the leading surface 
magnetic exponent is known, the surface thermal exponents and correction to scaling 
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exponents are new. In section 3 we calculate the excitation spectrum of the finite chain 
in the continuum limit. In section 4 we discuss these results and an exact finite-size 
scaling calculation is presented in the appendix. 

2. Finite-size scaling study of the surface magnetisation and the surface energy 

Let us consider a symmetric inhomogeneous Ising quantum chain with L - 1 spins ( L  
even) and Hamiltonian: 

where the deviation from the bulk interaction is included in A,(Z)( i  = 1,2) such that: 

( 2 . 2 a )  

(2.2 b )  

AI ( I )  = 1 - CY / I 

AJ1) = 1 - a / ( L -  1 -  1) 

1 < L/2 

1s L/2 

and ux, (+; are Pauli spin operators defined in the usual way: 

@ commutes with the parity operator 

I = I  

allowing a classification of the eigenstates into the odd (P = -1) and even (P = +1) 
sectors. The Hamiltonian can be written as a quadratic form in fermion operators 
through a Jordan-Wigner transformation (Jordan and Wigner 1928): 

1-1 

c ( I )  = n [exp iac++(j)u-(j)]a-(I) 
j = 1  

(2.5) 

and may be put in diagonal form 

where Eo is the ground state energy, through a canonical transformation using the 
fermion operators (Lieb er a1 1961): 

T k  = c [gkIc(l) -k h k l c + ( I ) ]  (2.7) 

where the coefficients g and h are real. The excitation energies squared, A:, satisfy 
the eigenvalue equation: 

i t 6 k  = h:6k (2.8) 

I  

and the excitation matrix is given by the product: 

(2.9) 'i = ( A  - & ( A  + 8) 
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r 7 

0 - A ( 1 )  0 
A(1) 0 -A (2) 

B =  ' .  . . .  ' * .  

A(L-3) 0 -A(L-2) 
- 0 A(L-2) 0 

with: 

(2. lob)  

(2.10a) 

and  

( 2 . 1 5 ~ )  

The following non-vanishing matrix elements may be used in the finite-size scaling 
study: 

e : ( / )  = ( E l a z ( W )  ( 2 . 1 6 ~ )  

e?( I, I + 1) = ( E  la,( /)ax ( I  + 1)lO) (2.16b) 
for the energy, and: 

mCr(0 = (alaAl)lO) ( 2 . 1 6 ~ )  
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for the magnetisation. In these expressions 10) is the ground-state which is even and 

(2.17) 1 E )  = I kk') = 7 ; ~  :,IO) ( k <  k ' )  

is a two-fermion even eigenstate. Using (2.7) and (2.14) one gets: 

ezkk'( 1 )  = @ k ' ( l ) q k (  1 )  - @ k ( l ) q k ' (  1 )  ( 2 . 1 8 ~ )  

e:;,( 1, I+ 1) @k8(l+ f ) q k (  1 )  - @ k ( / +  l ) v k , ( l ) .  (2.18b) 

On the first site we have to work with one-fermion excited states to get a non-vanishing 
matrix element for the magnetisation: 

(2.19) I 4  = Ik) = 720)  

(2.20) 

On the second site from the surface one may use either the one-fermion excited states 
(2.19) or the three-fermion excited states: 

la) = Ikk'k") = 7;71z71,,10) 

mk(2)  = @ k ( 2 )  @ k r ( 1 ) P k ' ( 1 ) - @ k ( 1 )  @k ' (2 )Tka(1 )  (2.22a) 

mkk'k'.(2) =@k(2)e i ' , ks (1)  + @ k ' ( 2 ) e z k k " ( l ) + @ k " ( 2 ) e z k ' k ( l ) .  (2.22b) 

If the excitations are numbered starting with k = 0 for the lowest one, the following 
finite-size behaviour is expected: 

e & ( l ) - e i ; ( l , 2 ) -  L-". (2.23 a )  

m,( 1 )  - L-'m (2.23 b )  

m,( I )  - L-"; c y <  -1 2 .  (2.23 c)  

The finite-size study has been performed on chains with sizes varying between 
L = 20 and 180 and the exponents deduced from log-log plots of the matrix elements 
against L and extrapolated to L = W. The results for the leading and correction to 
scaling exponents are shown on the figures 1-4. The accuracy is sufficient to allow us 
to conjecture analytic expressions for x, and correction to scaling exponents. 

k < k' < k" (2.21) 

for which: 

k '  k '  

When a 3 -f one gets: 

x, = a +; ( 2 . 2 4 ~ )  

x, = 2 a  + 2 (2.246) 

( 2 . 2 4 ~ )  

(2.24d) 

whereas with a s - f : 
( 2 . 2 5 ~ )  

(2.256) 
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Figure 1. Variation of the surface magnetic exponents x, (squares) and .v& (crosses when 
a < -f) with the perturbation amplitude CY. The exponent x,(x;) is obtained through an 
extrapolation of the finite-size results for mo(l), ( m , ( l ) )  on chains with length L = 8 0  to 
180. The lines are the exact values (equations (2.24a) and (2.25a)) and the insert shows 
the convergence of the two-point fit results for five values of L between 80 to 180. 

l o - ' , ' , ' , ' , ' I ' , ' i ' , '  

8 

6 

- L  - 2  0 2 L 
x e  

L 

2 

- 4  - 2  0 2 L 
a 

Figure 2. Variation of the surface energy exponent x , (a )  obtained through an extrapolation 
of the finite-size scaling results for e & ( l )  (squares) and eA;(l, 2)  (crosses) on chains with 
length L = 80 to 180. The lines give the conjectured analytical expressions (equations 
(2.246) and ( 2 . 2 5 6 ) )  and the insert shows the convergence of the two-point fits. 

and 

3. Excitation spectrum in the continuum limit 

( 2 . 2 5 ~ )  

( 2 . 2 5 d )  

In the finite-size scaling limit with L >> 1 ,  one may study the excitation spectrum in the 
continuum approximation introducing the variable z = I /  L. With (o( I )  = (-l)'@( I )  the 
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Figure 3. Variation of the surface magnetic correction to scaling exponent s(m, , , )  with a 
obtained through an extrapolation of the finite-size scaling results for m,,>(2) (equations 
( 2 . 2 4 ~ )  and ( 2 . 2 5 ~ ) )  on chains with length L = 80 to 180. The lines correspond to the 
conjectured values. 

Figure 4. Variation of the surface energ! correction to scaling exponent x ( e i 2 )  (squares) 
and s(e;;) (crosses) with a obtained through an extrapolation of the finite-size scaling 
results for e i , ( l )  and e ; i ( l ,  2 )  (equations (2.24d3 and (2.25d)) on chains with length L = 80 
to 180. The lines correspond to the conjectured values. 

finite-difference equation (2.1 1) may be rewritten as a second-order differential equation 
for the function ~ ( z ) .  Keeping terms up to O(L-*)  one gets: 

C p l (  z )  + [ ('1L/212 - a ( a  - l ) / z ' ]cp , (  z )  = 0 ( 3 . l a )  

~ ~ / ~ ~ c p ~ ~ ~ ~ - ( O I 1 ~ ~ I I , = ~ ~ = ~  (3. lb) 

O<z<f  

for the first half of the chain and 

cp;( Z )  + [ ( h L / 2 ) 2  - a (  a + 1) / (  1 - z ) ' ] ( P ~ (  Z )  = 0 f < z < l  ( 3 . 2 ~ )  

c p Z ( Z ) l , = l  = o  (3.2b) 

for the second half. The finite-difference equation (2 .11)  for 1 = L / 2  leads to the 
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PI(;) = cp2(4) 

cpo’,(f) = 4). 

(O?(z)- z1’2J*,a-1/2)(cz) 

C p a Z )  - (1 -z)1’2J*(m+l z , [c( l -  z ) l  

Equations ( 3 . 1 ~ )  and ( 3 . 2 ~ )  are Bessel equations with particular solutions: 

where c = AL/2. According to the z expansion of the Bessel function: 

X ( - 1 )kZ2k 
J , ( z ) = z ”  c 

k - 0  k !  r( v + k + 1)2 

(3.3a) 

(3.36) 

( 3 . 4 ~ )  

(3.46) 

(3.5) 

the boundary condition (3.26) for z = 1 is satisfied by cp:(z) when a > -1 and by cpi(z)  
when a < 0. Assuming the continuity of the solution with a, one gets: 

~ 2 ( z )  = B(1 -z)’”Jm+i,z[C(l - z ) l  -1 ( 3 . 6 ~ )  

4 z )  = B(1 -z)”2J-,u+,/2,rc(1 -z) l  -1 2 .  (3.66) 

Using equation ( 3 . 4 ~ )  and the relations between Bessel functions and their derivatives 
(Abramowitz and Stegun 1970) the boundary condition for z = 0 (equation (3.26)) 
may be transformed into: 

J*,o+l,z)(cz) = 0. (3.7) z 1 / 2  

So that, with the same assumption about the continuity with a as above, one gets 

cpl(z) = A z ~ / ~ J ~ - ~ , ~ ( c z )  c y 2  -1 ( 3 . 8 ~ )  

pl(  Z )  = AZ’/~J-, ,- , ,~,(CZ) a e  -1 7 .  (3.86) 

The continuity of cp(z) and its derivatives for z = j  provides a linear system for A and 
B with non-vanishing solutions when the following relations are satisfied: 

J:-l’*(cm = J:+ll2(c/2) - $  (3.9a) 

J-,m-l/2,(C/2) = J:,,+I,2,(c/2) a s  -1 2 (3.96) 

Let us first look for low-lying excitations. When a 2 - f  a small c expansion of 

2 

and the excitation energies Ak may be deduced from these relations. 

equation ( 3 . 9 ~ )  obtained using (3.5) gives the lowest mode: 

A o =  8(a  +f)/ L + O ( a  ++)’ (3.10) 

vanishing linearly with a at a,  = - 4 .  No such solution is obtained when a < - f  so 
that one may expect that A. vanishes faster than L-I. 

Then up to O(L-*) equations ( 3 . 1 ~ )  and ( 3 . 2 ~ )  with A = 0 have power-law solutions 
and 

cpl(z) = Az“ ( 3 . 1 1 ~ )  

9 2 (  Z )  = B(  1 - z ) - -  (3.116) 

satisfy the boundary conditions when a < 0, but continuity in a still requires a < - f  
for the occurence of a zero-mode. This solution is linked to the spontaneous surface 
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magnetisation appearing below ac. In order to normalise the eigenfunction one has 
to introduce a cut-off at z = 1 /  L and then, with q ( z )  normalised to L - ’ ,  one gets: 

cpl(l /L) - Lo (3.12)  

i.e. an amplitude independent of the size of the system. This behaviour is related to 
the finite value of cP,( 1 )  associated with the spontaneous surface magnetisation in the 
discrete formulation. 

The asymptotic form of the spectrum at high excitation energies may be obtained 
using the z-’ expansion of the Bessel functions: 

Jy(z)= (2/7rz)”2[cos(z- .rrv/2-.rr/4)+o(z-’)]. (3 .13)  

Let us rewrite the eigenvalue equations (3 .9)  as: 

J 3 C / 2 )  = J 3 c / 2 )  (3.14) 

with p = a - f ,  q = a + f  when a 3 - f  and p = - (a  -l) 2 ,  q = -( a+; )  when a s  - f .  
With the expansion (3.13),  one gets: 

sin[c - ( p  + q + 1)7r/2]  = 0 (3 .15)  

so that 

c = ( p  + q + 2 k +  1)77-/2 (3.16) 

and the asymptotic values of the excitation energies are 

A1, = ( 2 7 r / L ) ( a  +f+ k )  (ff 5 - f )  (3 .17a)  

A0 = 0,  = ( 2 7 r / L ) ( - a  +;+ k )  a <  -1 2.  (3 .176)  

Comparing equation (3 .17a)  with equation (3 .10) ,  one may suspect that the spectrum 
begins with k = 0 when a 5 -;, the factor 8 corresponding to 27r in the asymptotic 
spectrum and continuity with a requires also k = 0, 1 , 2 .  . . in equation (3.17b).  This 
is confirmed in figure 5 where the low-lying excitations on a chain with 180 spins are 
compared with the asymptotic values. 

101 ‘ I  ” ” ” 1 

- L  - 2  0 2 4 
a 

Figure 5. Variation of the first six excitations with a (crosses), as obtained on a chain with 
length L = 180, compared to the asymptotic spectrum (equations (3 .170)  and (3.17b)).  The 
first excitation vanishes when a < -;. 
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4. Discussion 

The study of the asymptotic spectrum in the preceding section was stimulated by a 
recent work of Igloi (Igloi 1989) in which the asymptotic spectrum of the asymmetric 
chain (with A , ( / )  for all 1 in equation (2.1)) was studied. Since the symmetric chain 
we had used in the finite-size study appeared to be more appropriate to look at the 
surface critical behaviour we repeated the calculation in this case and  we found that 
using the excitation energies given in equation (3 .17 ) ,  one may build the asymptotic 
conformal towers: 

E,, - E" = (TI L )  USXI? (4.1) 

where Eo is the ground-state energy, t', = 2 is the sound velocity, E ,  are excited states 
constructed from the asymptotic excitations and x, are critical dimensions associated 
with a scaling operator related to the dimension of a primary operator x ,  by xn+,  = 
x,  + n ( n  = 0 , 1 , 2 , .  . . ). When cy 5 -; the lowest dimension in the odd sector 

x, = a ++ (4.2) 

gives the magnetisation exponent in agreement with (2.24a). One has to associate an  
odd number of excitations to build odd  states so that the general expression for the 
scaling dimensions for odd operators is: 

(4.3) 

The behaviour of moL2(2) in equation ( 2 . 2 4 ~ )  corresponds to xodd( l ,4)  which is the 
lowest dimension with three excitations since the allowed p and q values begin with 
p = 1, q = 4  in this case. In  the even sector, always with a a -4, the lowest dimension 
is: 

xodd( p ,  q )  = (2p + 1)a + (2q + 1)/2 p , q = O , l , 2  ) . . ' .  

x e = 2 a + 2  (4.4) 

in agreement with the finite-size conjecture of equation (2.24b). Since a n  even number 
of excitations is required to build even states, one gets the general expression: 

Xe'en( p ,  q )  = 2pa + q p = 1 , 2 , .  . . , q = 2 , 3  ) . . . .  (4.5) 

When a S -4 in the odd  sector the lowest dimension is 

x,=o (4.6) 

which may be associated with ,2"=0. The next one - a + ;  differs from x;=-a  - f  
obtained through finite-size scaling. Taking .lo into account, one gets the odd  
dimensions: 

(4.7) 

and the behaviour of mOl2(2) in equation ( 2 . 2 5 ~ )  corresponds to xodd( l ,2) .  Even 
dimensions are given by: 

X o d d  (P, 4 )  = -2pa + q p = 1 , 2  ) . . . ,  q = 2 , 3  ) . . .  

xeieyp,  q ) = - ( 2 p + l ) a + ( 2 q + 1 ) / 2  p , q = o ,  1 , 2  ) . . .  (4.8) 

the lowest one giving x, = - c y  + f .  Using states built without taking A. into account 
leads to: 

xodd(p, q ) = - ( 2 p + l ) a + ( 2 q + 1 ) / 2  p , q = o ,  1,2 ) . . .  (4.9) 
Xe'en( p ,  q )  = -2pa + q p = 1 , 2  , . . . ,  q = 2 , 3  , . . .  (4.10) 
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i.e. the same dimensions as above with a change in the parity. Curiously if the value 
k = -1 is retained in equation (3.176), the allowed q values would begin with q = -1 
in (4.9) and q = O  in (4.10) and xk = -cy -4 would be obtained as xodd(O, -1) whereas 
the behaviour of the energy operators in equation (2.25d) would correspond to 
xeve"(l, 0). Although the value k = -1 gives as required a non-negative value of the 
excitation energy when Q -$, no state corresponding to this excitation appears in 
the spectrum (figure 5 ) .  

Our results are consistent with what may be called an asymptotic conformal 
behaviour of the model. It must be stressed that the Hamiltonian of equation (2.1) 
which was introduced for the finite-size scaling study is not the conformal transformed 
of the semi-infinite Hilhorst-van Leeuwen Hamiltonian. The conformally transformed 
system has been recently obtained (Burkhardt and Igloi 1990) by applying the w ( z )  = 
L / r  In z transformation (Cardy 1987) to the semi-infinite system. The transformed 
interaction is then: 

which gives back our model when 1/ L and 1 - I /  L<< 1 i.e. far from the middle of the 
chain but avoids a cusp at 1 = L/2. The exact spectrum has been obtained in the 
continuum limit (Burkhardt and Igloi 1990) and coincide with our asymptotic spectrum, 
explaining the asymptotic conformal behaviour obtained in the present work. 

For high positive a values, antiferromagnetic correlations appear near the surface 
and the excitation spectrum of the discrete model becomes quite complicated. A study 
of this domain is in progress. 
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Appendix. Exact results for the finite-size scaling when a > -5 
In this appendix we calculate the size dependance of the surface properties of the 
discrete model at the bulk critical point A ( W )  = 1 when a > - 4  using a method 
previously introduced by Peschel in a study of the A-dependance of the surface 
magnetisation of the semi-infinite inhomogeneous system (Peschel 1984). 

In order to simplify the exposition we take an asymmetric interaction A , (  I) between 
the L -  1 spins of the chain and study the properties of the surface at 1 = 1. The 
symmetric model gives the same behaviour. 

The leading contribution to ah(/) may be obtained from the eigenvalue equation 
if one neglects the O( L-') contribution of 12; in equation (2.1 1). With the boundary 
condition (2.12a), one get?) a recursion relation for the components of Q k :  

@k(I+ 1) z= - ( l /Al( l ) )@h(l)  ('41) 
leading to: 

1 - 1  
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The eigenvector must be normalised so that: 
L - 1  L - l  / - I  

/ =  1 / = I  , = I  
1 @ i ( l ) = l = @ i ( l )  1 AF'(j ) ,  

The product may be expressed in terms of r-functions: 
1 - 1  1 - 1  n ~ ; l ( j ) =  n ( i -a /~)- l=[r( i -a)r( i ) ] / r (~-a)  

] = I  ] = I  

and for large 1 values, one may use the expansion: 

r ( z+  b)  = (2.rr)1/2 e - - z z + b - I / 2  [ l  + o ( z - ' ) ]  

to write: 
1-1 n A ; 2 ( j ) = T 2 ( 1 - ~ ) 1 2 a [ 1 + O ( I - 1 ) ] .  

J = I  

Changing the sum in (A3) into an integral and using 
product, with a > - f  one gets: 

('46) 

the asymptotic expression of the 

which is independent of the state k to this order and leads to x, = a + f .  
To get the surface energy, one needs q k ( l )  given by: 

q k ( 1 )  = -2/Ak[@k(1) + Al(l)@k(2)1 

@k(2) = ( A i / 4 -  l ) @ k ( l ) l A i ( l )  (A91 

('48) 
according to  equation ( 2 . 1 3 ~ ) .  From equations (2.11) and ( 2 . 1 2 ~ )  we have exactly: 

where we keep the O( L-') contribution in the bracket since the leading term vanishes 
in equation (A8) and: 

qk(1)  = -(JIk/2)@k(l).  (A101 
Using equation ( 2 . 1 8 ~ )  one gets: 

e tk , (  1 )  -;(Ak - Ak)@*( 1) - L-(2"'2'. ( A l l )  
The same behaviour is obtained for e;: (1 ,2 )  in equation (2.18b) so that x, = 2 a  + 2  
when a > - f  in agreement with the numerical results. 

With m k k . k , ( 2 )  given in equation (2.226) although each of the three terms is of 
one may verify using (A1 1) that the sum of these leading contributions 

vanishes and the next term involves a factor O( L-2) arising from the A i  correction to 
O k ( 2 )  so that mkkpk..(2) - L-(sa+9/2i in agreement with the results of figure 3. 

Like in the case of the semi-infinite system (Peschel 1984) the method fails when 
a < -+ where it gives the constant leading contribution to a 0 ( 1 )  but does not predict 
the correct finite-size behaviour for Q k r O (  1 ) .  Nevertheless assuming (DkfO( 1) - 
in agreement with xk = -a - f  and using (A10) one gets: 

order L-(Sa+5/2) 

9 0 ( l ) - o ( L - I ) ,  Vk.O(l) - ('412) 
and equation ( 2 . 1 8 ~ )  leads to e & ( l )  - L-'-"+"2' so that the values of x, and xh 
obtained for a -4 are mutually consistent. In the same way one gets e;2(l) - L2" 
in agreement with equation (2.25d).  
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